A pneumatic conveying system is a process by which bulk materials of almost any type are transferred or injected using a gas flow as the conveying medium from one or more sources to one or more destinations. Air is the most commonly used gas, but may not be selected for use with reactive materials and/or where there is a threat of dust explosions. A well designed pneumatic conveying system is often a more practical and economical method of transporting materials from one point to another than alternative mechanical systems (belt conveyors, screw conveyors, vibrating conveyors, drag conveyors and other methodologies) because of three key reasons:
Pneumatic conveying can be used for particles ranging from fine powders to pellets and bulk densities of 16 to 3200 kg/m3 (1 to 200 lb/ft3 ). As a general rule, pneumatic conveying will work for particles up to 2 inches in diameter @ typical density. By "typical density" we mean that a 2 inch particle of a polymer resin can be moved via pneumatic conveying, but a 2 inch lead ball would not.
Types of Pneumatic Conveying There are several methods of transporting materials using pneumatic conveying. In general, they seem to fall into three main categories: dilute phase, dense phase, and air conveying.
Dilute phase conveying is the most common used method of transporting materials. This process uses a relatively large amount of air to convey a relatively small amount of material and at lower pressures than dense phase systems. The material is transported at high velocities through the system while being suspended in air. It is often referred to as suspension flow because the particles are held in suspension in the air as they are blown or sucked through the pipeline. To keep the material in suspension, it is necessary to maintain a minimum conveying air velocity that, for most materials, is of the order of 2500 – 6000 fpm.
In a dilute phase conveying system, the product is transported by lift, or suspension, of the individual particles in the air stream. As the velocity is subsequently reduced, the larger particles cannot sustain this lift and they begin to fall from suspension to the bottom of the pipe. The technical term used in the industry that describes the velocity at which particles fall from suspension from the air stream is "saltation velocity".
Unlike dilute phase conveying systems that typically use larger amounts of air to move relatively small amounts of material at high velocities in suspension, dense phase offers the enormous advantage of efficiently "pushing" a much denser concentration of bulk solids at relatively low velocities through a conveying line. The best, single description for identifying if a system is dense phase is whether the product velocities in the pipe are designed to be operating below the saltation velocity.